
Simms AI v1 : On the Design of a Self-Trained
Conversational Artificial Neural Network

Christopher Mitchell

Abstract

The computational power of current technology is rapidly approaching the capacity of the human brain,
yet this power must be reliably harnessed to create artificial pseudointelligences to interact with humans.
The vast scope of human thought and conversation make manually programming all possible functions
into such an AI infeasible, demonstrating the need for a partially self-trained AI. Simms AI v1 is such an
implementation, interacting with humans via instant messaging and reading the open-source encyclopedia
Wikipedia to gain a knowledge of English syntax and vocabulary and build its speech patterns. It uses a
context-based algorithm that performed well under controlled circumstances, and showed the flaws that
must be improved in the next version. Simms v1 demonstrates that a complex neural network can be self-
trained to parse and construct syntactically-correct sentences without any a priori knowledge of a language’s
syntax and vocabulary.

F

1 INTRODUCTION

Simms AI v1 is the culmination of several previous Cemetech projects including WordNet, an
application that attempted to spider websites and build associations between related websites
based on keywords rather than mutual hyperlinking. The basic design of Simms is a centralized
neural network database paired with a distributed processing array that parses input into
long-term memory, constructs a response when necessary, and returns it to the module that
delivered the input. Its neural structure is based on that of the human brain, in that each
neuron or ’node’ maintains between one and thousands of connections to other nodes. In order
to speed the development of its associative memory, a variety of techniques were employed,
including spidering Wikipedia, reading chat logs, and engaging in conversation with human
users, which quickly demonstrated the power and the limitations of the approach. Speed and
working database size became a primary concern as Simms’ neural network exceeded 300,000
nodes connected by two million connections, a suboptimal node-connection ratio caused by poor
text-cleaning routines and storage efficiency. Careful analysis revealed fundamental flaws in the
neural storage system that will be examined in designing Simms AI v2, the next iteration of the
Simms project.

Simms’ software was written from scratch using command-line (CLI) PHP and MySQL. A
custom thread-handling system was designed and constructed that can manage multiple mod-
ules, managers, and database accesses over many physical machines. Simms AI v1 comprises a
single supervisor node containing the neural network database, and six slave nodes performing
computation and interaction. Each node is assigned a specified role, which sometimes leads to
misbalanced load; Simms AI v2 will incorporate automatic load balancing to distribute work

Cemetech Technical Report #2
(c) 2009 Christopher Mitchell

March 30, 2009



2

more evenly. Each node also runs a manager thread that is responsible for notifying the su-
pervisor that it is still active and receiving new versions of modules to allow for on-the-fly,
zero-downtime upgrades.

A primary focus in the design of Simms AI v1 was a lack of reliance on any pre-programmed
syntactical knowledge of English specifically other than its parsing system’s delineation of
phrases at space and punctuation boundaries. In theory, if trained primarily in any one language,
it would begin to speak and respond in that language using vocabulary and syntax appropriate
to the language. Simms AI v1 does not have the ability to associate similar forms of the same
word and extract rules for conjugation or declination, instead assuming that it sees each form
of a word in the proper context with sufficient frequency to train it in the correct usage of each
form. Once Simms AI had read a large number of articles and held conversations over several
months, it was indeed capable of parsing long sentences and returning similarly syntactically-
valid English sentences with correct vocabulary and tense and number agreement, but continues
to lack any understanding of the sentences it is constructing, obviating the need for a second
version building on the successes of Simms AI v1 and correcting its inadequencies.

2 NEURAL AND MODULE STRUCTURE

Simms AI consists of four layers of data storage and processing modules. The bottom of the
hierarchy illustrated in Figure 1 is the Long-Term Memory (LTM) database, the primary purpose
of which is to store the two massive tables that form Simms AI’s merged syntactical and factual
knowledge. It also holds management tables recording the active threads across all clustered
machines and managing inter-process signaling, which is abstracted such that the differences
between inter- and intra-node communications are transparent to the individual threads. The
next highest layer is the logic algorithm that controls two-way communication between the top
layer (I/O and administration modules) and the database. In one direction it parses an English
sentence and stores it into the LTM along with its context; in the opposite direction, it constructs
an English sentence for output. LTM is read and written by a variety of modules in the second-
to-top layer comprising two main classes, I/O modules and administration modules. The I/O
modules take input from protocols such as HTTP and AIM (AOL Instant Messenger) and pass
it down to the Brain level, then wait for a response from the Brain level and return it to the
originating protocol. In addition, some handle multiple sessions, like tracking different contexts
for conversations with different users on AIM. The top layer is a management system that
attempts to maximize uptime by killing lagging threads, respawning dead threads, moderating
ITC (Inter-Thread Communication), and synchronizing updated modules across all cluster nodes.

2.1 Memory Structure
Simms’ long-term memory (LTM) is designed to simultaneously store factual and syntactical
information, a choice with advantages and disadvantages. Combining the two sets of data
simplifies LTM reads and writes and therefore makes them faster, but also significantly limits
the variety and coherence of the responses that Simms 1 can produce. The LTM is stored as
a vast MySQL database with two primary tables, Nodes and Connections. The items in the
Nodes table each represent a single English word, number, or other alphanumeric sequence that
can be inserted into a sentence with a delimiter such as space, comma, or period on each side.
Each word is linked to a unique identifying number, and also has associated metrics tracking
its hitcount (the number of connections it holds to other Nodes) and timestamps for its creation
and last access. The Connections table tracks all of the possible directional paths from one node
to another; each item in Connections has a from and to ID number corresponding to items
in the Nodes table, a strength value that increases as each connection is reinforced by usage or



3

Manager

Secretary AIMWikiBrainmapSync

Brain

Simms-brain Database

News

Fig. 1. In each hardware node, the manager module governs, spawns, and kills each of the
other modules, including the Sync and Brainmap management modules and the Wiki, Secretary,
and AIM interaction modules. The interaction modules use the Brain module to insert and extract
coherent conversational data from the main neural database of Simms’ long-term memory. Short-
term memory is currently stored in temporary arrays within the individual interaction processes

learning, and a list of associated contexts or topics, also a set of integer identifiers referring to the
Nodes table. While powerful enough to allow the construction of novel, grammatically-correct
sentences, this system proved infeasible for the storage and retrieval of contextually-relevant
information. Specifically, Simms 1 has trouble figuring out which of the words or phrases in a
sentence are the most important to use to set the context, and while cross-indexing the relative
strengths of each of the possible keywords would slightly improve this ability, the computation
cost would be too high to be practical.

A practical example of the structure of Simms’ neural network is shown in Figure 2. Each of
the rectangles are items in the Nodes table with their English equivalents. The arrows connecting
nodes represent items in the Connections tables; note that connections are unidirectional. This
diagram is centered on the structure created by the sentence ”Simms AI is a machine.”; lighter
arrows show the connections formed by the sentence ”What is Simms AI?” Finally, an additional
unlabeled branch shows how the sentence ”Simms AI is a robot” branches off of the ”Simms
AI is a machine” connection structure. Notice that each connection is tagged with the topics
it involves, specifically, all the words in the current context (for a longer conversation, this
context would include words from previous sentences). Note how Simms is able to construct a
new sentences from the previous valid connections, starting at the ”What” node and working
through ”is a” to finish with either ”machine” or ”robot”, creating ”What is a robot?” or ”What
is a machine?” The disadvantage of this system is the valid construction of nonsensical sentences
like ”What is Simms AI is a robot?”.

2.2 AIM Module
The AIM module governs Simms AI’s interactions with users over the AOL Instant Messenger
Protocol used by a large percentage of instant messaging clients currently available. It utilizes
the BlueTOC PHP library to communicate with the Internet, separating conversations with each
user into a subthread to avoid excessive lag caused by high database usage. Simms treats each
simultaneous conversation separately with a separate context, though in the future conferences
may be possible that share contexts. The AIM module logs all conversations for later examination.

2.3 Wikipedia Module
Wikipedia is an example of a large user-created database written in a combination of technical
and conversational English. Simms reserves a thread to select random topics from the Ency-



4

Simms

AI

is

a

machine

Simms, AI, 
machine, is, a

is, Simms, 
AI, what

is, Simms, 
AI, what

Simms, AI, 
machine, is, a

Simms, AI, 
machine, is, a

Simms, AI, 
machine, is, a

what
is, Simms, 
AI, what

?

.

Simms, AI, 
machine, is, a

is, Simms, 
AI, what

robot

.

Fig. 2. This diagram shows the partial neural network for the phrases ”What is Simms AI?”, ”Simms
AI is a machine”, and ”Simms AI is a robot”. It demonstrates other phrases that Simms might be
able to synthesize, such as ”What is a machine?” and ”What is a robot?”.

clopedia to research both to build its syntactical space and to increase its factual associations.
The Wikipedia module picks a random word from the Nodes table, attempts to look it up, and
repeats until it finds an article. It properly parses redirects within the MediaWiki markup, and
parses each page it reads to remove as much formatting as possible to render the page down
to plain text. Wikipedia poses a problem for conversational learning, as it is written from a
single perspective. Future implementations will use Wikipedia and similar databases to build
syntactical and factual knowledge but will maintain a separate contextual system to determine
how input from another user should be handled and how a relevant response should be framed.
Once Simms finishes parsing each sentence, maintaining a continuous context through the article,
it flushes the context and starts looking for a new article.

2.4 Secretary Module
The Secretary module serves the dual purpose of logging attempts to reach a real human user
when that user is offline, and takes advantage of normal people to build Simms’ conversational
experience. The AIM module monitors the screenname of Simms’ creator and opens a second
AIM session under that username when the human is detected to have logged off. It logs
any conversations that occur between the human and other human users, and also attempts
to interact by introducing itself and then responding to the other human users.

2.5 Brainmap Module
In order to better visualize the contents of Simms’ memory and its association mechanism, the
Brainmap module accepts a keyword and generates an image of two levels of neural network
from that particular keyword. The generated neural map centered on the keyword with the
top m nodes associated with the keyword arranged in a circle around it and an outer ring of



5

n nodes connected to the first-level nodes. In addition, the Brainmap module can accept web-
based requests and email the final image to a user when it completes. The Brainmap module is
particularly helpful in visualizing for what topics Simms AI has much or little context, as shown
in Figure 3.

(a) High context density (b) Moderate context density (c) Low context density

Fig. 3. Brainmaps generated for three topics showing varying context density, ’artificial’, ’algorithm’,
and ’cadmium’ respectively.

2.6 Other Modules
Many other modules and smaller blocks of code maintain Simms AI’s structure and functionality.
Among the most important are the Sync module, the News module, and the TTY handler.
Sync is an administrative module that rsyncs from the supervisor node machine (Simms) to the
subsidiary processing nodes (Simms0 - Simms5). The News module is an I/O module similar
in function to the Wikipedia module; it reads the RSS feed for Google News every five minutes,
parses it into headlines, and uses the Brain module to parse each headline into its database,
thus keeping its vocabulary up-to-date with current events. The TTY handler is a sub-module
within the Manager that displays a running status display on the LCD of the supervisor node
of thread births, deaths, and suicides, important thread events, and error/debug messages.

3 CLUSTERED HARDWARE IMPLEMENTATION

Simms runs on a custom PHP cluster management system that transparently executes and
synchronizes threads across multiple physical node. One machine is designated as the supervisor
machine (in the instance of Simms, as Simms). All the other machines in the cluster are normal
processing nodes (labeled Simms0 through Simms5 for this case). Rather than dynamically
allocate available processing power, each of Simms’ six non-supervisor nodes is assigned a
specific role: Simms0 handles the AIM and Secretary modules, Simms1 runs the Wiki module,
Simms2 maintains the Subconscious module (a ”creativity” system that was never completed in
Simms AI v1 but will be implemented in some form in Simms AI v2), Simm3 runs three parallel
Brainmap threads, Simms4 handles on-the-fly LTM backups, and Simms5 has no assigned role.

The thread management system uses the supervisor node as the scheduler, if Simms’ threading
system was likened to a single-computer task scheduler, and each of the machines can be taken
as a multithreaded CPU. The supervisor ensures that a Manager module is running on each of
the nodes (including itself), and each Manager is in charge of maintaining the correct threads on
its own node. The Managers have the power to spawn new threads, kill existing threads that are
lagged, and accept the suicide of a single-execution thread that has completed its duties. Any
thread can send signals to any other thread, as moderated through the Simms-brain database



6

my the Manager on the supervisor node, with one specific limitation: signals can only name
recipient and sender of a signal as a thread of a specific type (Wiki, AIM, Brainmap, etc), not a
particular instance of that thread type. Therefore, signals must pertain to stateless transactions
and can be fetched and cleared by the first thread of the target type that is available, a mechanism
that greatly reduces lag when a thread of one type is loaded much more heavily than another
thread of the same type.

Only the supervisor node (Simms) operates with a monitor to display TTY output of errors
and events; the rest operate in headless mode. All are running Ubuntu 7.04 server edition with
PHP 5 and MySQL 5. Each of the non-supervisor nodes is a 2.00GHz Pentium 4 (32-bit, 256KB
L2 cache) with 1GB RAM and a 20GB or 30GB hard drive. The supervisor is a hyperthreaded
Pentium 4 at 3.20GHz (32-bit, 2MB L2 cache total) with 2GB RAM and a 320GB hard drive for
the Simms-brain database.

4 PERFORMANCE

Simms AI was optimized for ease-of-modification rather than pure speed, hence its implemen-
tation in PHP and MySQL instead of a faster C or C++ application. The MySQL manipulation
was particularly efficient from PHP, and the dynamic variable allocation allowed easy creation
and destruction of the large arrays Simms allocates for sentence parsing and synthesis. However,
this simplicity introduced a cost in the form of relatively high per-word processing time for both
parsing and synthesis, a penalty made particularly acute by the single database used for both
syntax/vocabulary and factual information. As expected, storage used for inter-node connections
increased linearly given constant uptime (or polynomially given non-constant uptime), while the
rate of storage needed for new nodes decreased linearly over time as Simms’ vocabulary grew
and the discovery of new words became less frequent. Memory and storage usage is discussed
in detail and detailed for the first five months of Simms’ life in Figure 4.

Processing performance was erratic at the beginning of Simms’ testing, but once a few coding
errors were found and remedied, a simple and logical pattern was found governing processing
time. Longer conversations generally caused longer response time due to a buildup of context,
although context decay (10% per sentence) prevented infinite context accumulation. The length
of the input sentence was found to be the largest factor in deciding the final response time,
while the length of the output sentence synthesized by Simms was relatively uncorrelated to the
response time; a mathematical analysis is below along with a summary graphed in Figure 5.

4.1 Memory Growth and Scalability
Simms AI’s memory structure necessitates that over time, the delta node count per unit time
should decrease, as the longer Simms learns the fewer new words it will run across, a language
like English having a finite number of words and word-forms. Since the number of ways that
words can be arranged with respect to each other is at most Nconnections = 2N2

nodes, and Simms
reads sentences such that for each sentence, in which nnodes is the number of words in the sentence
(non-unique) and nconnections = nwords − 1, it must be true that 0.5nnodes ≤ nconnections < nnodes,
connection growth continues nearly linearly with respect to uptime for a diverse set of inputs
even as the growth rate of the nodes table drops off precipitously. This trend is clearly shown in
Figure 4, which unfortunately introduces the additional complication of downtime skewing the
absolute trends. Nevertheless, the accuracy of the trends for Nconnections vs Nnodes for any time
period remains, showing continued linear growth of connections in the database as node count
begins to level off.

It is expected that any future implementation would show a similar growth pattern, in which
fewer new unique nodes would be discovered per unit time but growth of connections between



7

nodes would remain at least linear. Indeed, given a sufficiently advanced algorithm, connection
growth might be expected to be polynomial, if the learning rate accelerated as the implementation
became more experienced.

9.0E+05

1.2E+06

1.5E+06

1.8E+06

an
ti

ty

C i

0.0E+00

3.0E+05

6.0E+05

12/24/2007 1/21/2008 2/18/2008 3/17/2008

Q
u

a

Date

Connections

Nodes

Fig. 4. The growth of Simms’ Long-Term Memory (LTM) as it learned and evolved. The notable
slowdown in the latter half of the graph is attributable to downtime.

4.2 Processing Performance
Developing a suitable clustered processing implementation proved difficult. At first, the design
entailed both a distributed database and distributed processing, but it soon became evident that
the network overhead for the whole-table MySQL queries that Simms AI v1 necessitates far
outweighed the distributed processing capabilities of such a system. Therefore, in the finalized
Simms v1 a single node, Simms, takes care of storing the database and serving all query results;
actual processing is distributed across each of the other nodes, Simm0 through Simms5. The lag
between an input sentence being delivered to the brain module and the output sentence being
returned to the calling module was examined under a variety of parameter variation on the
assumption that this most accurately represents the processing performance of Simms. Figure 5
shows three graphs demonstrating response lag as a function of the input sentence length and
the output sentence length. As noted below, the nonlinearities and inconsistencies shown by the
graphs arise from the effect of context on the brain module. As a conversation grows in duration,
context accumulates that makes response more coherent but also lengthens the processing time
necessary to return the output sentence. In addition, each unique word has a different amount
of related context, and the response time is proportional to the context attached to each word in
the input sentence (and to some degree, the output sentence). The most defined trend visible, in
Figure 5(a), is that the length of the input sentence bears a significant proportional relationship
on the time lag between input and output. The lag also generally increases with output sentence
length, but the trend correlation is much less defined than for the input length.

The absolute processing time between input and output is much higher than would be hoped
for a conversational neural network; even for short output sentences, response time usually



8

0 2 4 6 8 10 12 14
0

50

100

150

200

250

Input Length (words)

R
es

po
ns

e 
La

g 
(s

ec
)

Response Time vs. Input Length

(a) Response lag for varying input
length

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

Output Length (words)

R
es

po
ns

e 
La

g 
(s

ec
)

Response Time vs. Output Length

(b) Response lag for varying output
length

2
4

6
8

10
12

14 0
2

4
6

8
0

50

100

150

200

250

Output Length (words)

Response Time for Input vs. Output Length

Input Length (words)

R
es

po
ns

e 
La

g 
(s

ec
)

(c) Response lag for varying input/output length

Fig. 5. Response lag in seconds for inputs and outputs of varying lengths. Inconsistencies
arise from the different context complexities for each set of input and output; in addition, longer
conversations accumulate more context, slowing sentence processing and synthesis.

exceeds one minute. Future versions of Simms will attack this lag in a variety of ways, most
importantly the separation of context (factual) and syntactical information to allow fact and
syntax to be fetched and combined simultaneously and with both fewer and smaller database
queries.

5 FUTURE WORK

Simms AI is a thorough proof-of-concept for a conversational, auto-learning neural network
pseudointelligence, but its shortcomings and inefficiencies point to many improvements that can
be introduced in future versions. One aspect that will not be changed is the implementation in



9

PHP and MySQL; the ease of modification (PHP is an interpreted rather than compiled language)
and seamless integration with the MySQL database query language make it an appropriate choice
for implementing a neural-networked AI. As examined in the previous sections, Simms’ largest
speed handicap derives from its use of a single large database for syntactical, vocabulary, and
factual information, a choice that also severely limited its coherence in conversations even with
an effort to maintain an extensive context-tracking system for all brain nodes and interactions.

Therefore the primary improvement that will be made in Simms AI v2 is the introduction
of separate tables, or possibly even databases, to handle syntactic/vocabulary and factual data.
To facilitate self-guided learning, Simms will actively run statistical analysis algorithms against
its syntax knowledge in an attempt to find common sentence and phrase structures, group
together common types of words (analogous to nouns, verbs, articles, etc, although Simms will
not be given an explicit understanding of those classes). Other statistical analysis tools within
this ”Subconscious” module grouping may include synonym/antonym searching, word form
analysis, and even letter proportion per word analysis, all intended to build up a more intuitive
and flexible understanding of the language in question. This improvement will allow a more
dynamic response pattern; currently, gregariousness forces Simms to return exactly one sentence
for each input sentence. Better-structured factual memory would allow Simms to respond with
zero or more sentences to each input sentence, or ideally, even be able to generate spontaneous
output with no specific user input.

The database stores significant node and connection noise that clogs the databases, lags queries,
and makes responses less accurate. For example, the Wiki module tends to clean input incom-
pletely, occasionally storing markup rather than pure data in Simms’ LTM. Better cleaning and
demarcation algorithms would improve this efficiency. A secondary improvement will cover both
better detection and storage of punctuation within sentences, allowing Simms to understand and
use punctuation more correctly.

A final improvement will be made in the clustering algorithm, first to load-balance by au-
tomatically assigning new threads to the node within the cluster with the least load, later to
subdivide individual threads across multiple nodes to permit sub-thread-level parallelism.

6 CONCLUSION

Simms AI v1 was shown to be able to synthesize grammatically-consistent sentences given a
cohesive training set. Brainmaps revealed that it successfully constructed a neural network where
minimum path length between each node is proportional to the relative relevance between each
word pair. Its conversational algorithm was less successful; because its responses are based on
topic association built from the words the user has typed, it tends to construct sentences contain-
ing the highest-scoring word in the input sentence rather than a response with unique words.
Future implementations of the Simms project will improve this inadequacy by distinguishing
between sentences uttered by different speakers, as well as making a distinction between short-
term and long-term memory and between factual and grammatical memory. The cluster-based
hardware setup will be maintained and upgraded, with an automatic load-balancing ability
built-in to prevent disproportionate load on single hardware nodes.

7 ACKNOWLEDGMENTS

The author would like to thank the members of Cemetech for their feedback and stress-testing
assistance, Chrystina Montuori Sorrentino and Deian Stefan for their algorithmic advice, and
Prof. F. Fontaine and the µLab research laboratory of the Cooper Union for providing the
computational resources.


